Answer:
Angle of incline is 20.2978°
Explanation:
Given that;
Gravitational acceleration on a planet a = 3.4 m/s²
Gravitational acceleration on Earth g = 9.8 m/s²
Angle of incline = ∅
Mass of the stone = m
Force on the stone along the incline will be;
F = mgSin∅
F = ma
The stone has the same acceleration as that of the gravitational acceleration on the planet.
so
ma = mgSin∅
a = gSin∅
Sin∅ = a / g
we substitute
Sin∅ = (3.4 m/s²) / (9.8 m/s²)
Sin∅ = 0.3469
∅ = Sin⁻¹( 0.3469 )
∅ = 20.2978°
Therefore, Angle of incline is 20.2978°
Answer:
The speed stays constant after the force stops pushing.
Explanation:
Speed always stays constant when the force stops pushing it.
Answer: Q=5.46 L/s
COP=2.58
Explanation:
Given that
Cp = 4.18 kJ/(kg.C
density = 1 kg/L
Heat rejected Qr= 570 kJ/min
Power in put W= 2.65 KW
From first law of thermodynamics
U = W+ q
q = Heat absorbed
U = internal energy
W = workdone
U = 570 kJ/min = 9.5 KW
9.5 = 2.65 + q
q = 6.85 KW
COP = q/W
COP = 6.58 / 2.65
COP=2.58
Lets take volume flow rate is Q
So mass flow rate of water m = ρ Q
q = m Cp ΔT
6.85 = 1 x Q x 4.18 ( 23-5)
Q=0.091 L/min
Q=5.46 L/s
Answer:
c) At a distance greater than r
Explanation:
If G= Gravitational constant
M= Mass of earth
r= distance from earth center
then orbital speed is ;
v = 
==> v²=GM/r
If speed of first satellite = V₁
==> V₁² = GM/r
==> r = GM/V₁²
If speed of second satellite say V₂ is less than V₁ then square of V₂ will be less than square of V₁ , and hence GM will be divided by less number in case of second satellite, and hence will give greater value of r as compared to first satellite.
So our answer is c
The answer is A) velocity, because velocity is speed and displacement.
Hope this helps