Answer:
0.8 mL of protein solution, 9.2 mL of water
Explanation:
The dilution equation can be used to relate the concentration C₁ and volume V₁ of the stock/undiluted solution to the concentration C₂ and volume V₂ of the diluted solution:
C₁V₁ = C₂V₂
We would like to calculate the value for V₁, the volume of the inital solution that we need to dilute to make the required solution.
V₁ = (C₂V₂) / C₁ = (2mg/mL x 10mL) / (25 mg/mL) = 0.8 mL
Thus, a volume of 0.8 mL of protein solution should be diluted with enough water to bring the total volume to 10 mL. The amount of water needed is:
(10 mL - 0.8 mL) = 9.2 mL
This one is the easiest law, but you would take 53 and 185 and add them together to get 235 and then you will minus 235 and 365 and the answer you are looking for is 130 mmHg! Hopefully this helped you!!
Answer:
0.2 mL stock solution, 0.8 solvent, 0.1 mL first solution and 0.9 solvent
Explanation:
The final volume for fist solution is 1 mL and concentration must will be 1/5, then 1 mL/5=0.2 mL. For complete the 1 mL add the missing solvent volume 1 mL-0.2 mL=0.8 mL. For second solution, assuming final volume is 1 mL, and concentration 1/10, then we have 1 mL /10=0.1 mL solution 1/5. Completing volume, 1 mL-0.1 mL= 0.9 mL solvent.
Answer:
The answer to your question is 2 molecules
Explanation:
Unbalanced chemical reaction
H₂(g) + N₂(g) ⇒ NH₃ (g)
Reactants Elements Products
2 H 3
2 N 1
Balanced chemical reaction
3H₂(g) + N₂(g) ⇒ 2NH₃ (g)
Reactants Elements Products
6 H 6
2 N 2
From the balanced chemical reaction we conclude that when 3 molecules of hydrogen react with one molecule of nitrogen, 2 molecules of ammonia will be formed.
Explanation:
a) Anode:
Cathode :
b)
c) As , the reaction is spontaneous.
d)
Explanation:
a) Here Ni undergoes oxidation by loss of electrons, thus act as anode. Hydrogen undergoes reduction by gain of electrons and thus act as cathode.
Anode:
Cathode :
b) The representation is given by writing the anode on left hand side followed by its ion with its molar concentration. It is followed by a slat bridge. Then the cathodic ion with its molar concentration is written and then the cathode.
c)
Where both are standard reduction potentials.
= +ve, reaction is spontaneous
= -ve, reaction is non spontaneous
= 0, reaction is in equilibrium
Thus as , the reaction is spontaneous.
d) The standard emf of a cell is related to Gibbs free energy by following relation:
= standard gibbs free energy
n= no of electrons gained or lost
F= faraday's constant
= standard emf
Thus value of Gibbs free energy is -48250 Joules.