The answer is true. According to the second law of thermodynamics, energy tends to become more spread out
Answer:
∆H > 0
∆Srxn <0
∆G >0
∆Suniverse <0
Explanation:
We are informed that the reaction is endothermic. An endothermic reaction is one in which energy is absorbed hence ∆H is positive at all temperatures.
Similarly, absorption of energy leads to a decrease in entropy of the reaction system. Hence the change in entropy of the reaction ∆Sreaction is negative at all temperatures.
The change in free energy for the reaction is positive at all temperatures since ∆S reaction is negative then from ∆G= ∆H - T∆S, we see that given the positive value of ∆H, ∆G must always return a positive value at all temperatures.
Since entropy of the surrounding= - ∆H/T, given that ∆H is positive, ∆S surrounding will be negative at all temperatures. This is so because an endothermic reaction causes the surrounding to cool down.
A) Magnesium Chloride
Mg is the symbol of Magnesium and Cl is the symbol of chlorine ( but when Cl is a compound it will be Choride)
Answer : Option 4) Region of the most probable electron location.
Explanation : As per the electron cloud model of the atom, an orbital is a region where the probability of finding an electron is highest. According to this model which was used to identify the probable location of the electrons when they go around the nucleus of an atom.
This electron cloud model was different from the older Bohr atomic model by Niels Bohr.
A 70.-kg person exposed to ⁹⁰Sr absorbs 6.0X10⁵ β⁻ particles, each with an energy of 8.74X10⁻¹⁴ J.
<h3>What is β⁻ particles ?</h3>
A beta particle, also known as a beta ray or beta radiation (symbol ), is a highly energetic, swiftly moving electron or positron that is released during the radioactive disintegration of an atomic nucleus. Beta decay occurs in two ways: decay and + decay, which result in the production of electrons and positrons, respectively.
In air, beta particles with an energy of 0.5 MeV have a range of roughly one meter; the range is energy-dependent.
Ionizing radiation of the sort known as beta particles is regarded, for the purposes of radiation protection, as being more ionizing than gamma rays but less ionizing than alpha particles. The damage to live tissue increases as the ionizing effect increases, but so does the radiation's penetration power.
To learn more about β⁻ particles from the given link:
brainly.com/question/10111545
#SPJ4