Answer:
C Beause energy can't be carred with the water to the shore
Explanation:
Answer is: pH value of weak is 3.35.
Chemical reaction (dissociation): HA(aq) → H⁺(aq) + A⁻(aq).
c(HA) = 0.0055 M.
α = 8.2% ÷ 100% = 0.082.
[H⁺] = c(HA) · α.
[H⁺] = 0.0055 M · 0.082.
[H⁺] = 0.000451 M.
pH = -log[H⁺].
pH = -log(0.000451 M).
pH = 3.35.
pH (potential of
hydrogen) is a numeric scale used to specify the acidity or basicity <span>an aqueous solution.</span>
<span>The s sublevel has just one orbital, so can contain 2 electrons max. The p sublevel has 3 orbitals, so can contain 6 electrons max. The d sublevel has 5 orbitals, so can contain 10 electrons max. And the 4 sublevel has 7 orbitals, so can contain 14 electrons max.
So, having this in mind, 10 electrons in total can be contained in the 4d sublevel.
</span>
Answer:
A) 8.00 mol NH₃
B) 137 g NH₃
C) 2.30 g H₂
D) 1.53 x 10²⁰ molecules NH₃
Explanation:
Let us consider the balanced equation:
N₂(g) + 3 H₂(g) ⇄ 2 NH₃(g)
Part A
3 moles of H₂ form 2 moles of NH₃. So, for 12.0 moles of H₂:

Part B:
1 mole of N₂ forms 2 moles of NH₃. And each mole of NH₃ has a mass of 17.0 g (molar mass). So, for 4.04 moles of N₂:

Part C:
According to the <em>balanced equation</em> 6.00 g of H₂ form 34.0 g of NH₃. So, for 13.02g of NH₃:

Part D:
6.00 g of H₂ form 2 moles of NH₃. An each mole of NH₃ has 6.02 x 10²³ molecules of NH₃ (Avogadro number). So, for 7.62×10⁻⁴ g of H₂:

The correct answer for the question that is being presented above is this one: "<span>16.728 g."</span>
Given that
ΔHsolid = -5.66 kJ/mol.
This means that 5.66 kJ of heat is released when 1 mole of NH3 solidifies
When 5.57 kJ of heat is released
amount of NH3 solidifies = 5.57/5.66 = 0.984 moles
<span>molar mass of NH3 = 17 g/mole </span>
<span>1 mole of NH3 = 17 g </span>
So, 0.984 moles of NH3 = 17 X 0.984 = 16.728 g