We know, the ideal gas equation,
P1V1 / T1 = P2V2 / T2
Here, P1 = 760 mm
V1 = 10 m3
T1 = 27 + 273 = 300 K
P2 = 400 mm Hg
T2 = -23 + 273 = 250 K
Substitute their values,
760*10 / 300 = 400 * V2 / 250
25.33 * 250 = 400 * V2
V2 = 6333.333/ 400
V2 = 15.83
In short, Your Answer would be approx. 15.83 m3
Hope this helps!
<span>g = GMe/Re^2, where Re = Radius of earth (6360km), G = 6.67x10^-11 Nm^2/kg^2, and Me = Mass of earth. On the earth's surface, g = 9.81 m/s^2, so the radius of your orbit is:
R = Re * sqrt (9.81 m/s^2 / 9.00 m/s^2) = 6640km
here, the speed of the satellite is:
v = sqrt(R*9.00m/s^2) = 7730 m/s
the time it would take the satellite to complete one full rotation is:
T = 2*pi*R/v = 5397 s * 1h/3600s = 1.50 h
Hope it help i know it's long and may be confusing but if you have any more questions regarding this topic just hmu! :)</span>
It's a bit of a trick question, had the same one on my homework. You're given an electric field strength (1*10^5 N/C for mine), a drag force (7.25*10^-11 N) and the critical info is that it's moving with constant velocity(the particle is in equilibrium/not accelerating).
<span>All you need is F=(K*Q1*Q2)/r^2 </span>
<span>Just set F=the drag force and the electric field strength is (K*Q2)/r^2, plugging those values in gives you </span>
<span>(7.25*10^-11 N) = (1*10^5 N/C)*Q1 ---> Q1 = 7.25*10^-16 C </span>
Velocity is d/t distance over time. Increase velocity (speed) decrease. Increase d velocity increases.
The star looks like a desirable hunk of masculinity to Jane. But to John, the star looks like a wimpy momma's boy who might compete with him for Jane's attention. Jane and John have different impressions of the star because of their gender-specific instincts that have evolved during thousands of millenia of human evolution.