First, we will get the distance traveled before the driver applied the brakes.
distance = velocity * time
distance = 25*0.34 = 8.5 m
Now, we will calculated the distance that the car traveled after the driver applied the brakes. To do this, we will use the equation of motion:
<span>vf^2 = vi^2 + 2*a*d where:
</span>vf = zero, vi = 25 m/s and a = -7 m/s^2
Note: The negative sign is only to show deceleration
d = <span> 1/2*(625) /(7) = 44.6428 m
The total stopping distance =</span> 8.5 + 44.6428 = 53.1428 m
It would last as long as the applied force continued, or until the accelerating object hit something.
The air resistance on the feather would be the correct answer.
Answer:
- <u>77.8 m/s, downward</u>
Explanation:
For uniform acceleration motion, the average speed is equal to half the soum of the initial velocity, Vi, and the final velocity, Vf
- Average speed = (Vf + Vi)/2
Also, by definition, the average speed is the distance divided by the time:
- Average speed = distance / time
Then:
Other kinematic equation for uniform acceleration is:
Since the window is falling and the air resistance is ignored, a = g (gravitational acceleration ≈ 9.8m/s²)
Replacing the known values we can set a system of two equations:
From (Vf + Vi)/2 = 300m/6.62s
(Vf + Vi) = 2 × 300m/6.62s
- Vf + Vi = 90.634 equation 1
From Vf = Vi + a×t
Vf - Vi = 9.8 (6.62)
- Vf - Vi = 64.876 equation 2
Adding the two equations:
- Vf = 77.8 m/s downward (velocities must be reported with their directions)
1) 29.8 C
At the beginning, the metal is at higher temperature (70.4 C) while the water is at lower temperature (23.6 C). When they are put in contact, the metal transfers heat to the water, until they reach thermal equilibrium: at thermal equilibrium the two objects (the metal and the water have same temperature). Therefore, since the temperature of the water at thermal equilibrium is 29.8 C, the final temperature of the metal must be the same (29.8 C).
2) 6.2 C
The temperature change of the water is given by the difference between its final temperature and its initial temperature:

where

Substituting into the formula,

And the positive sign means that the temperature of the water has increased.
3) -40.6 C
The temperature change of the metal is given by the difference between its final temperature and its initial temperature:

where

Substituting into the formula,

And the negative sign means the temperature of the metal has decreased.