Answer:
A.) Change only the coefficients
Explanation:
An equation is balanced when there is an equal quantity of each type of element on both sides of a reaction. When balancing an equation, the only way to manipulate the amounts of each element is by changing the coefficient values. The coefficients alter the amount of each molecule in the reaction.
The subscripts cannot be altered. If you were to change the subscripts, you would be altering the amount of atoms in a particular molecule.
Answer:
A. 96.3 mg/dL
Absolute error: 5.7 mg/dL
Relative error: 5.6%
B. 97.2 mg/dL
Absolute error: 4.8 mg/dL
Relative error: 4.7%
C. 104.8 mg/dL
Absolute error: 2.8 mg/dL
Relative error: 2.7%
D. 111.5 mg/dL
Absolute error: 9.5 mg/dL
Relative error: 9.3%
E. 110.5 mg/dL
Absolute error: 8.5 mg/dL
Relative error: 8.3%
Explanation:
The formula for the absolute error is:
Absolute error = |Actual Value - Measured Value|
The formula for the relative error is:
Relative error = |Absolute error/Actual value|
In your exercise, we have that
Actual Value = 102.0 mg/dL
A. 96.3 mg/dL:


B. 97.2 mg/dL


C. 104.8 mg/dL


D. 111.5 mg/dL


E. 110.5 mg/dL


PbCl₂(aq) → Pb²⁺(aq) + 2Cl⁻(aq)
NaCl(aq) → Na⁺(aq) + Cl⁻(aq)
Pb²⁺(aq) + 2Cl⁻(aq) ⇄ PbCl₂(s)
At increase the concentration of chloride ions - concentration of lead ions decreases, the lead chloride is formed.
O.N. of Na = +1
O.N. of O = -2
Let, O.N. of Tin = x
1*2 + x + -2*2 = 0
2+x-4 = 0
x-2 = 0
x = 2
SO OPTION C IS YOUR ANSWER......
Explanation:
As per Brønsted-Lowry concept of acids and bases, chemical species which donate proton are called Brønsted-Lowry acids.
The chemical species which accept proton are called Brønsted-Lowry base.
(a) 
is Bronsted lowry acid and
is its conjugate base.
is Bronsted lowry base and
is its conjugate acid.
(b)

is Bronsted lowry base and HCN is its conjugate acid.
is Bronsted lowry acid and
is its conjugate base.
(c)

is Bronsted lowry acid and
is its conjugate base.
Cl^- is Bronsted lowry base and HCl is its conjugate acid.
(d)

is Bronsted lowry acid and
is its conjugate base.
OH^- is Bronsted lowry base and
is its conjugate acid.
(e)

is Bronsted lowry base and OH- is its conjugate acid.
is Bronsted lowry acid and OH- is its conjugate base.