D. Being cold temperatures can result in a cold nose. With prolonged exposure The body will start to lose heat faster than it can generate it, this is the result of hypothermia.
A. Large atoms have valence electrons farther from the nucleus and lose them more readily, so they are more reactive than small atoms.
For example, the valence electron of a small atom like Li is tightly held. <em>Lithium gently fizzes</em> on the surface as it reacts with the water to produce hydrogen.
In contrast, the valence electron of a large atom like Cs is so loosely held that <em>cesium exlodes </em>on contact with water.
20 g O2 x 1 mol O2/32 g O = 0.625 mol O2
Explanation:
(a) The given data is as follows.
Load applied (P) = 1000 kg
Indentation produced (d) = 2.50 mm
BHI diameter (D) = 10 mm
Expression for Brinell Hardness is as follows.
HB =
Now, putting the given values into the above formula as follows.
HB =
=
=
= 200
Therefore, the Brinell HArdness is 200.
(b) The given data is as follows.
Brinell Hardness = 300
Load (P) = 500 kg
BHI diameter (D) = 10 mm
Indentation produced (d) = ?
d = ![\sqrt{(D^{2} - [D - \frac{2P}{HB} \pi D]^{2})}](https://tex.z-dn.net/?f=%5Csqrt%7B%28D%5E%7B2%7D%20-%20%5BD%20-%20%5Cfrac%7B2P%7D%7BHB%7D%20%5Cpi%20D%5D%5E%7B2%7D%29%7D)
= ![\sqrt{(10 mm)^{2} - [10 mm - \frac{2 \times 500 kg}{300 \times 3.14 \times 10 mm}]^{2}}](https://tex.z-dn.net/?f=%5Csqrt%7B%2810%20mm%29%5E%7B2%7D%20-%20%5B10%20mm%20-%20%5Cfrac%7B2%20%5Ctimes%20500%20kg%7D%7B300%20%5Ctimes%203.14%20%5Ctimes%2010%20mm%7D%5D%5E%7B2%7D%7D)
= 4.46 mm
Hence, the diameter of an indentation to yield a hardness of 300 HB when a 500-kg load is used is 4.46 mm.