Greenhouse gases act to <u>increase</u> temperatures by <u>absorbing</u> thermal infrared radiation.
We have already learned that Earth's atmosphere is composed often of nitrogen and oxygen. Those gases are transparent to incoming solar radiation. they may be also transparent to outgoing infrared radiation, which means that they do not take in or emit sun or infrared radiation.
The multiplied quantities of greenhouse gases human sports are adding to the environment have dissatisfied the balance that has been in location for the reason that ceases of the closing ice age, including greater greenhouse gases decreases the amount of infrared radiation energy leaving the atmosphere.
Greenhouse gases inside the ecosystem time and again absorb and re-radiate infrared radiation (warmth). strength radiated from Earth's surface as warmth, or infrared radiation is absorbed and re-radiated by using greenhouse gases, impeding the loss of warmth from our surroundings to area.
Learn more about radiations here brainly.com/question/24469662
#SPJ4
Chemical reaction: Ba(NO₃)₂ + H₂SO₄ → BaSO₄ + 2HNO₃.
V(H₂SO₄) = 250 mL ÷ 1000 mL/L = 0,25 L.
m(BaSO₄) = 0,55 g.
n(BaSO₄) = m(BaSO₄) ÷ M(BaSO₄).
n(BaSO₄) = 0,55 g ÷ 233,38 g/mol.
n(BaSO₄) = 0,00235 mol.
From chemical reaction: n(BaSO₄) : n(Ba(NO₃)₂) = 1 : 1.
n(Ba(NO₃)₂) = 0,00235 mol.
c(Ba(NO₃)₂) = n(Ba(NO₃)₂) ÷ V.
c(Ba(NO₃)₂) = 0,00235 mol ÷ 0,25 L.
c(Ba(NO₃)₂) = 0,0095 mol/L.
Answer:
1
Explanation:
Using the Rydberg formula as:

where,
λ is wavelength of photon
R = Rydberg's constant (1.097 × 10⁷ m⁻¹)
Z = atomic number of atom
n₁ is the initial final level and n₂ is the final energy level
For Hydrogen atom, Z= 1
n₂ = 2
Wavelength = 410.1 nm
Also,
1 nm = 10⁻⁹ m
So,
Wavelength = 410.1 × 10⁻⁹ m
Applying in the formula as:

Solving for n₁ , we get
n₁ ≅ 1
Answer:
Ee your house 6r2f5r56rrrr6gjyf
Explanation: