Can you explain this a bit more I don’t quite understand
d = distance traveled by her on her bicycle on a long flat road = 24 kilometer
t = time taken by her to travel distance "d" on her bicycle on a long flat road = 1.2 hours
v = average speed of vivian = ?
we know that average speed is given as
v = d/t
inserting the values in the above formula
v = 24 kilometer / 1.2 hour
v = 20 kilometer/hour
hence the correct choice is
C) 20 km/h
Answer:
each resistor is 540 Ω
Explanation:
Let's assign the letter R to the resistance of the three resistors involved in this problem. So, to start with, the three resistors are placed in parallel, which results in an equivalent resistance
defined by the formula:

Therefore, R/3 is the equivalent resistance of the initial circuit.
In the second circuit, two of the resistors are in parallel, so they are equivalent to:

and when this is combined with the third resistor in series, the equivalent resistance (
) of this new circuit becomes the addition of the above calculated resistance plus the resistor R (because these are connected in series):

The problem states that the difference between the equivalent resistances in both circuits is given by:

so, we can replace our found values for the equivalent resistors (which are both in terms of R) and solve for R in this last equation:

Answer:0.061
Explanation:
Given

Temperature of soup 
heat capacity of soup 
Here Temperature of soup is constantly decreasing
suppose T is the temperature of soup at any instant
efficiency is given by



integrating From
to 


![W=c_v\left [ T-T_C\ln T\right ]_{T_H}^{T_C}](https://tex.z-dn.net/?f=W%3Dc_v%5Cleft%20%5B%20T-T_C%5Cln%20T%5Cright%20%5D_%7BT_H%7D%5E%7BT_C%7D)
![W=c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ]](https://tex.z-dn.net/?f=W%3Dc_v%5Cleft%20%5B%20%5Cleft%20%28%20T_C-T_H%5Cright%20%29-T_C%5Cleft%20%28%20%5Cln%20%5Cfrac%7BT_C%7D%7BT_H%7D%5Cright%20%29%5Cright%20%5D)
Now heat lost by soup is given by

Fraction of the total heat that is lost by the soup can be turned is given by

![=\frac{c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ]}{c_v(T_C-T_H)}](https://tex.z-dn.net/?f=%3D%5Cfrac%7Bc_v%5Cleft%20%5B%20%5Cleft%20%28%20T_C-T_H%5Cright%20%29-T_C%5Cleft%20%28%20%5Cln%20%5Cfrac%7BT_C%7D%7BT_H%7D%5Cright%20%29%5Cright%20%5D%7D%7Bc_v%28T_C-T_H%29%7D)




Answer:
see that the correct one is B
Explanation:
To solve this exercise let us use the kinematic relations
v² = v₀² - 2 a x
as they indicate that the car stops, therefore the final speed is yield v = 0
x = v₀² / 2a
let's calculate
x = 2²/(2 0.8)
x = 2.5 m / s²
When reviewing the answers we see that the correct one is B