The train is traveling 26 meters A second .
Answer:
Normal force = 0.326N
Explanation:
Given that:
mass released from rest at C = 3.7 g = 3.7 × 10⁻³ kg
height of the mass = 1.1 m
radius = 0.2 m
acceleration due to gravity = 9.8 m/s²
We are to determine the normal force pressing on the track at A.
To to that;
Let consider the conservation of energy relation; which says:
mgh = mgr + 1/2 mv²
gh = gr + 1/2 v²
gh - gr = 1/2v²
g(h-r) = 1/2v²
v² = 2g(h-r)
However; the normal force will result to a centripetal force; as such, using the relation
N =mv²/r
replacing the value for v² = 2g(h-r) in the above relation; we have:
Normal force = 2mg(h-r)/r
Normal force = 2 × 3.7 × 10⁻³ × 9.8 ( 1.1 - 0.2 )/ 0.2
Normal force = 0.065268/0.2
Normal force = 0.32634 N
Normal force = 0.326N
Answer:
b. diagnoses and corrects errors in an operational system
Explanation:
Corrective maintenance is one that is performed with the purpose of repairing faults or defects that occur in equipment and machinery. As such, it is the most basic way of providing maintenance, as it simply involves repairing what has broken down. In this sense, corrective maintenance is a process that basically consists of locating and correcting faults or damages that are preventing the machine from performing its function in a normal way.
Answer:
Flow velocity
50.48m/s
Pressure change at probe tip
1236.06Pa
Explanation:
Question is incomplete
The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to the flow. If the differential height between the water columns connected to the two outlets of the probe is 0.126m, determine (a) the flow velocity and (b) the pressure rise at the tip of the probe. The air temperature and pressure in the duct are 352k and 98 kPa, respectively
solution
In this question, we are asked to calculate the flow velocity and the pressure rise at the tip of probe
please check attachment for complete solution and step by step explanation
Answer: 131.75minutes
Explanation:
First if all, we've to find the density of liquid which will be:
= Specific gravity × Density to pure water
= 0.91 × 8.34lb/gallon
= 7.59lb/gallon
Then, the volume that's required to fill the tank will be:
= Load limit/Density of fluid
= 40000/7.59
= 5270.1gallon
Now, the time taken will be:
= V/F
= 5270.1/40
= 131.75min
It'll take 131.75 minutes to fill the tank in the truck.