Answer:
Yes, Pb3(PO4)2.
Explanation:
Hello there!
In this case, according to the given balanced chemical reaction, it is possible to use the attached solubility series, it is possible to see that NaNO3 is soluble for the Na^+ and NO3^- ions intercept but insoluble for the Pb^3+ and PO4^2- when intercepting these two. In such a way, we infer that such reaction forms a precipitate of Pb3(PO4)2, lead (II) phosphate.
Regards!
Answer:
Hydrochloride acid + Zinc = Zinc Chloride + Hydrogen
Explanation:
When Hydrochloride acid and Zinc react, it results in the formation of Zinc chloride and hydrogen.
<em>Hope I helped</em>
Answer:
a) Kb = 10^-9
b) pH = 3.02
Explanation:
a) pH 5.0 titration with a 100 mL sample containing 500 mL of 0.10 M HCl, or 0.05 moles of HCl. Therefore we have the following:
[NaA] and [A-] = 0.05/0.6 = 0.083 M
Kb = Kw/Ka = 10^-14/[H+] = 10^-14/10^-5 = 10^-9
b) For the stoichiometric point in the titration, 0.100 moles of NaA have to be found in a 1.1L solution, and this is equal to:
[A-] = [H+] = (0.1 L)*(1 M)/1.1 L = 0.091 M
pKb = 10^-9
Ka = 10^-5
HA = H+ + A-
Ka = 10^-5 = ([H+]*[A-])/[HA] = [H+]^2/(0.091 - [H+])
[H+]^2 + 10^5 * [H+] - 10^-5 * 0.091 = 0
Clearing [H+]:
[H+] = 0.00095 M
pH = -log([H+]) = -log(0.00095) = 3.02
Hi, P.S. The atomic number will always be the same as the number of protons...