a. 7.0 m/s
First of all, we need to convert the angular speed (1200 rpm) from rpm to rad/s:

Now we know that the row is located 5.6 cm from the centre of the disc:
r = 5.6 cm = 0.056 m
So we can find the tangential speed of the row as the product between the angular speed and the distance of the row from the centre of the circle:

b. 
The acceleration of the row of data (centripetal acceleration) is given by

where we have
v = 7.0 m/s is the tangential speed
r = 0.056 m is the distance of the row from the centre of the trajectory
Substituting numbers into the formula, we find

The type of motor that allows for constant speed regardless of load are called Geared Speed Control motors. This type of motor has a tachometer feedback device attached at the rear of the motor that gives constant feedback to the speed controller giving the advantage of constant speed regardless of load. The tachometer allows for varied frequency delivery to the motor to maintain pre-set output speed.
Neon has 8 electrons in it's valence shell.
So, option A is your answer.
Hope this helps!
According to the Law of Universal Gravitation, the gravitational force is directly proportional to the mass, and inversely proportional to the distance. In this problem, let's assume the celestial bodies to be restricted to the planets and the Sun. Since the distance is specified, the other factor would be the mass. Among all the celestial bodies, the Sun is the most massive. So, the Sun would cause the strongest gravitational pull to the satellite.
Answer:
I WANT TO BE HANDSOME AND I WANT TO BE HEARTTHROB!
SO GIRLS PLEASE LOVE ME!
Explanation:
I WANT TO BE HANDSOME AND I WANT TO BE HEARTTHROB!
SO GIRLS PLEASE LOVE ME!