<u>Answer:</u> The tree was burned 16846.4 years ago to make the ancient charcoal
<u>Explanation:</u>
The equation used to calculate rate constant from given half life for first order kinetics:

where,
= half life of the reaction = 5715 years
Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = ? yr
= initial amount of the sample = 100 grams
[A] = amount left after decay process = 13 grams
Putting values in above equation, we get:

Hence, the tree was burned 16846.4 years ago to make the ancient charcoal
Answer:
Make them go instinct
Explanation:
No one wants cats taking over the whole world
The molar mass of Sb2S3 is approximately equal to 339.7 g/mol. We calculate the number of moles of Sb2S3 by dividing the given mass by the molar mass.
n = 23.5 g / (339.7 g/mol)
n = 0.0692 mols
To calculate for the number of formula units, we multiply the number of mols by the Avogadro's number,
number of formula units = (0.0692 mols)(6.022 x 10^3)
= 4.167 x 10^22 formula units
Answer:
A feasible error could have been the removal of the sample before all water evaporated.
Explanation:
In order to determine the percentage of water in an hydrate, an experiment that could be performed is the heating of the sample until the mass does not change. If the student heated the sample an insufficient amount of time, water will be present in the sample, thus reducing the percentage reported.