I believe if it were heavier with more mass, then the sun would pull it in and there would be no mercury. It might also be hotter.
Answer: magnitude of the instantaneous angular velocity
Explanation:
Instantaneous angular speed is refered to as the magnitude of the instantaneous angular velocity. We should note that the instantaneous angular velocity is the rate that has to do with the rotation of an object in circular path.
Answer:
4.245s
Explanation:
Given that,
Hypothetical value of speed of light in a vacuum is 18 m/s
Speed of the car, 14 m/s
Time given is 6.76 s, and we're asked to find the observed time, T
The relationship between the two times can be given as
T = t / √[1 - (v²/c²)]
The missing variable were looking for is t, and we can find it if we rearrange the formula and make t the subject
t = T / √[1 - (v²/c²)]
And now, we substitute the values and insert into the equation
t = 6.76 * √[1 - (14²/18²)]
t = 6.76 * √[1 - (196/324)]
t = 6.76 * √(1 - 0.605)
t = 6.76 * √0.395
t = 6.76 * 0.628
t = 4.245 s
Therefore, the time the driver measures for the trip is 4.245s
Answer:
The velocity of the star is 0.532 c.
Explanation:
Given that,
Wavelength of observer = 525 nm
Wave length of source = 950 nm
We need to calculate the velocity
If the direction is from observer to star.
From Doppler effect

Put the value into the formula







Negative sign shows the star is moving toward the observer.
Hence, The velocity of the star is 0.532 c.
Perpendicular slope would be 1/3. so the equation will be Y=1/3x -4