Data Given:
Time = t = 30.6 s
Current = I = 10 A
Faradays Constant = F = 96500
Chemical equivalent = e = 63.54/2 = 31.77 g
Amount Deposited = W = ?
Solution:
According to Faraday's Law,
W = I t e / F
Putting Values,
W = (10 A × 30.6 s × 31.77 g) ÷ 96500
W = 0.100 g
Result:
0.100 g of Cu²⁺ is deposited.
Answer:
2300J
Explanation:
1 kilojoule is 1000joules so to get how much is 2.3 multiply it with 1000
Answer:

Explanation:
Given :
Mass of a bar of lead = 115.2 g
Initial water level
= 25 mL
Final water level
= 35.5 mL
Difference in the water level = 35.5 - 25
= 10.5 mL
= 
We know that when a body is submerged in water, it displaces its own volume of water.
Therefore, the volume of the lead bar = volume of the water displaced = 10.5 mL = 
We know that mathematically, density is the ratio of mass of body to its volume.
Density of the lead bar is given by :


= 
From the calculation as shpwn in the procedure below, the equilibrium constant of the substance is 6.9 * 10^-15.
<h3>What is equilibrium constant?</h3>
The equilibrium constant for the solubility of aa solid in solution is called the solubility product Ksp. The Ksp shows the extent to which a solid is dissolved in solution.
Given that;
Fe(OH)2 ⇄Fe^2+ + 2(OH)^-
Ksp = s(2s)^2
We have s as 1.2 x 10^-5 M
So
Ksp = 4s^3
Ksp = 4( 1.2 x 10^-5 )^3
Ksp = 6.9 * 10^-15
Learn more about Ksp:brainly.com/question/27132799
#SPJ1