<span>Based on the experience of the responder, to correctly calculate measurements in real-world. Firstly is to avoid errors as much as possible. Errors are what makes your measurement invalid and unreliable. There are two types of error which is called the systematic error and the random error. Each error has different sources. Words that were mentioned –invalid and unreliable are very important key aspects to determine that your measure is truly accurate and consistent. Some would recommend using the mean method, doing three trials in measuring and getting their mean, in response to this problem.</span>
To separate off different products in order of their boiling points. You do it by a process of heating and cooling in a horizontal condenser usually.
Intermolecular forces in solids are strongest than in liquids and gases. Gases have the least strong intermolecular forces. Intermolecular forces are weak and are significant over short distances between molecules (determined by Coulomb’s law). The farther away from the molecules the weaker the intermolecular forces. Since molecules in solids are the closest, the intermolecular force between them as the strongest. Conversely, since gas molecules are farthest apart, the intermolecular forces between them are the weakest.
Answer:
B. Molarity will decrease
Explanation:
Molarity is one of the measures of the molar concentration of a solution. It is calculated by dividing the number of moles of the solute by the volume of the solvent. This means that the higher the amount of solute in relation to the volume of solvent, the higher the molarity of that solution.
In essence, adding water to a solution dilutes it i.e it increases the solvent's volume in relation to the solute, causing the molarity to decrease. In a nutshell, diluting a solution (by adding water or more solvent) causes the molarity of such solution to decrease. For example, if water is added to a 0.70 molar solution of CuSO4, the molarity of the solution will DECREASE.