Answer: 4 herz is the answer!
Explanation:
Answer:
(a) The total energy of the object at any point in its motion is 0.0416 J
(b) The amplitude of the motion is 0.0167 m
(c) The maximum speed attained by the object during its motion is 0.577 m/s
Explanation:
Given;
mass of the toy, m = 0.25 kg
force constant of the spring, k = 300 N/m
displacement of the toy, x = 0.012 m
speed of the toy, v = 0.4 m/s
(a) The total energy of the object at any point in its motion
E = ¹/₂mv² + ¹/₂kx²
E = ¹/₂ (0.25)(0.4)² + ¹/₂ (300)(0.012)²
E = 0.0416 J
(b) the amplitude of the motion
E = ¹/₂KA²
(c) the maximum speed attained by the object during its motion
Answer:
h = 3.3 m (Look at the explanation below, please)
Explanation:
This question has to do with kinetic and potential energy. At the beginning (time of launch), there is no potential energy- we assume it starts from the ground. There, is, however, kinetic energy
Kinetic energy = m
Plug in the numbers = (4.0)()
Solve = 2(64) = 128 J
Now, since we know that the mechanical energy of a system always remains constant in the absence of outside forces (there is no outside force here), we can deduce that the kinetic energy at the bottom is equal to the potential energy at the top. Look at the diagram I have attached.
Potential energy = mgh = (4.0)(9.8)(h) = 39.2(h)
Kinetic energy = Potential Energy
128 J = 39.2h
h = 3.26 m
h= 3.3 m (because of significant figures)