Answer
Find out the m∠6 .
To prove
As given
a∥e , m∥n , and m∠2 = 112°.
As m∥n
a is the transversal (A line that cuts across two or more (usually parallel) lines is called transverasl.)
Thus
∠ 2 = ∠3 ( Corresponding angle property )
∠3 = 112°
Also
a∥e and m is transversal .
∠ 3 = ∠6 = 112 ° ( Corresponding angle property )
Therefore
∠6 = 112°
Answer:
604.58
Step-by-step explanation:
because hegarty says its 604.58
The answer should be
Y=-3x+19
Answer:

Step-by-step explanation:
we know that
If two triangles are similar
then
the ratio of their corresponding sides are equal and the corresponding angles are also equal
In this problem

we have

Find the value of TS

substitute




see the attached figure to better understand the problem
Answer:
(x, y) = (5, 1)
Step-by-step explanation:
To <em>eliminate</em> x, you can double the second equation and subtract the first.
... 2(x +4y) -(2x -3y) = 2(9) -(7)
...11y = 11 . . . . . simplify
... y = 1 . . . . . . divide by 11
Using the second equation to find x, we have ...
... x + 4·1 = 9
... x = 5 . . . . . subtract 4
_____
<u>Check</u>
2·5 -3·1 = 10 -3 = 7 . . . . agrees with the first equation
(Since we used the second equation to find x, we know it will check.)