Answer:
54.6°
Explanation:
From law of reflection i=r.
So, construct the reflected ray at 55.7°degrees from the normal and let it fall on the other mirror.
Now draw the second normal at the point of incidence and again measure the angle of incidence, and draw the angle of reflection.
If you consider triangle AOB, one angle is ∠AOB=90°
and ∠OAB is 54.6°
From angle sum property third angle ie ∠ABO=180°-90°-54.6°=35.4°
So, the second incident angle will be 54.6°
Hence, the second reflected angle will be 54.6 degrees.
<span>The choices can be found elsewhere and as follows:
</span><span>a. they are so small that they stay close to the ground due to the attractive properties of charged soil particles.
b. they are easily carried by the wind.
c. they easily dissolve in liquid droplets.
d. it is easier for then to roll along the small crevices in the ground.</span><span>
</span>I think the correct answer from the choices listed above is option B. Only the smallest particles of soil can be displaced by suspension because they are so small that they are easily carried by the wind. Hope this answers the question. Have a nice day. Feel free to ask more questions.
Answer:
If R₂=25.78 ohm, then R₁=10.58 ohm
If R₂=10.57 then R₁=25.79 ohm
Explanation:
R₁ = Resistance of first resistor
R₂ = Resistance of second resistor
V = Voltage of battery = 12 V
I = Current = 0.33 A (series)
I = Current = 1.6 A (parallel)
In series

In parallel


Solving the above quadratic equation


∴ If R₂=25.78 ohm, then R₁=10.58 ohm
If R₂=10.57 then R₁=25.79 ohm
Explanation:
In physics, force is a quantitative description of an interaction that causes a change in an object's motion. ... It is defined as Mass x Acceleration = Force. The SI unit of force is the newton (N); defined as the unit of force which would give to a mass of one kilogram an acceleration of 1 meter per second squared. hope this helps you discover the best answer