***elements become less electropositive and more electronegative in their properties...
Answer:
1428.6m/s²
Explanation:
Given parameters:
Force applied on the body = 40N
Mass of the body = 28g
1000g = 1kg
28g will therefore be 0.028kg
Unknown:
Acceleration = ?
Solution:
To solve this problem, we use the expression derived from Newton's second law of motion.
Force = mass x acceleration
Insert the parameters and solve;
40 = 0.028 x acceleration
Acceleration =
= 1428.6m/s²
Answer:
Fx = 32.14 [N]
Fy = 38.3 [N]
Explanation:
To solve this problem we must decompose the force vector, for this we will use the angle of 50 degrees measured from the horizontal component.
F = 50 [N]
Fx = 50*cos(50) = 32.14 [N]
Fy = 50*sin(50) = 38.3 [N]
We can verify this result using the Pythagorean theorem.
![F = \sqrt{(32.14)^{2}+ (38.3)^{2}} \\F = 50 [N]](https://tex.z-dn.net/?f=F%20%3D%20%5Csqrt%7B%2832.14%29%5E%7B2%7D%2B%20%2838.3%29%5E%7B2%7D%7D%20%5C%5CF%20%3D%2050%20%5BN%5D)
Answer:
D. 48.985 N
Explanation:
Newton's second law states that:

which means that the net force acting on an object is equal to the product between the object's mass and its acceleration.
The equation of the forces for the briefcase in the elevator therefore is given by:

where
N is the normal reaction exerted on the briefcase
(mg) is the weight of the briefcase, with
m = 4.5 kg being its mass
g = 9.8 m/s^2 is the acceleration of gravity
a = 1.10 m/s^2 is the acceleration
Here we chose upward as positive direction.
Solving for N, we find the normal force:

So the closest answer is
D. 48.985 N
Answer:
Up
Explanation:
The direction where air resistance act will always be opposite to where the object is going.
Since the object is going down, the air resistance would go up.