<span>4FeS2 + 11O2 = 2Fe2O3 + 8SO2</span>
Percent yield is calculated as the actual yield divided by the theoretical yield multiplied by 100.
Actual yield = 55 g ( 1 mol / 159.69 g ) = 0.34 mol Fe2O3
To find for the theoretical yield, we first determine the limiting reactant.
100 g O2 ( 1 mol / 32 g) = 3.13 mol O2
200 g FeS2 (1 mol / 119.98g) = 1.67 mol FeS2
Therefore, the limiting reactant is O2.
Theoretical yield = 3.13 mol O2 ( 2 mol Fe2O3 / 11 mol O2 ) = 0.57 mol Fe2O3
Percent yield = (0.34 mol / 0.57 mol) x 100 = 59.74%
The columns of the periodic table, also referred to as "groups" contain elements with similar reactive properties, due to these elements having a similar configuration of electrons in their outer shell.
The equilibrium constant, Kc=0.026
<h3>Further explanation</h3>
Given
1.72 moles of NOCI
1.16 moles of NOCI remained
2.50 L reaction chamber
Reaction
2NOCI(g) = 2NO(g) + Cl2(g).
Required
the equilibrium constant, Kc
Solution
ICE method
2NOCI(g) = 2NO(g) + Cl2(g).
I 1.72
C 0.56 0.56 0.28
E 1.16 0.56 0.28
Molarity at equilibrium :
NOCl :

NO :

Cl2 :

![\tt Kc=\dfrac{[NO]^2[Cl_2]}{[NOCl]^2}\\\\Kc=\dfrac{0.224^2\times 0.112}{0.464^2}=0.026](https://tex.z-dn.net/?f=%5Ctt%20Kc%3D%5Cdfrac%7B%5BNO%5D%5E2%5BCl_2%5D%7D%7B%5BNOCl%5D%5E2%7D%5C%5C%5C%5CKc%3D%5Cdfrac%7B0.224%5E2%5Ctimes%200.112%7D%7B0.464%5E2%7D%3D0.026)