Answer:
Explanation:
Given conditions
1)The stress on the blade is 100 MPa
2)The yield strength of the blade is 175 MPa
3)The Young’s modulus for the blade is 50 GPa
4)The strain contributed by the primary creep regime (not including the initial elastic strain) was 0.25 % or 0.0025 strain, and this strain was realized in the first 4 hours.
5)The temperature of the blade is 800°C.
6)The formula for the creep rate in the steady-state regime is dε /dt = 1 x 10-5 σ4 exp (-2 eV/kT)
where: dε /dt is in cm/cm-hr σ is in MPa T is in Kelvink = 8.62 x 10-5 eV/K
Young Modulus, E = Stress,
/Strain, ∈
initial Strain, 


creep rate in the steady state


but Tinitial = 0


solving the above equation,
we get
Tfinal = 2459.82 hr
Answer:
Students learn about the fundamental concepts important to fluid power, which includes both pneumatic (gas) and hydraulic (liquid) systems. Both systems contain four basic components: reservoir/receiver, pump/compressor, valve, cylinder.
Explanation:
The exciter provides fully coherent receiver local oscillator signals at radar frequency band as well as requisite, auxiliary high frequency clock signals. The exciter function is divided into an internal frequency synthesizer and an upconverter.
Hope this helps :)))