Answer:
<h2>
6.36 cm</h2>
Explanation:
Using the formula to first get the image distance
1/f = 1/u+1/v
f = focal length of the lens
u = object distance
v = image distance
Given f = 16.0 cm, u = 24.8 cm
1/v = 1/16 - 1/24.8
1/v = 0.0625-0.04032
1/v = 0.02218
v = 1/0.02218
v = 45.09 cm
To get the image height, we will us the magnification formula.
Mag = v/u = Hi/H
Hi = image height = ?
H = object height = 3.50 cm
45.09/24.8 = Hi/3.50
Hi = (45.09*3.50)/24.8
Hi = 6.36 cm
The image height is 6.36 cm
Answer:
a) U = 735 J
, b) U = 125.7 J
, c) U = 0 J
Explanation:
The gravitational power energy is
U = mg y - mg y₀
The last value is a constant, for simplicity we can make it zero, if the lowest point is at the origin of the coordinate system, which in this case we will place in the lowest part
a) Rope is horizontal
The height in this case is the same length of the rope
y = 2.10 m
w = mg = 350 N
U = 350 2.10
U = 735 J
b) when the angle is 34º
y = L - L cos 34
y = L (1- cos34)
y = 2.10 (1- cos 34)
y = 0.359 m
U = 350 0.359
U = 125.7 J
c) in this case this point coincides with the reference system
y = 0
U = 0 J
Answer: Option A
Explanation:
The force of attraction existent between the proton and neutron in the nucleus of an atom is extremely large. When the nucleus splits there is a large release of heat and energy larger than the force present in any of the other options listed.