Answer:
The temperature of the gas.
Explanation:
According to the kinetic molecular theory, the molecules of a substance are in constant random motion.
If an ideal gas is contained is a sealed rigid container, the average velocity of the gas molecules is dependent of the temperature of the gas.
Recall that temperature is defined as the average kinetic energy of the molecules of a body.
Answer:
Part 1) 85.3 grams NaCl
Part 2) 8.79 x 10²³ formula units NaCl
Explanation:
<u>(Part 1)</u>
To find the mass of NaCl, you need to multiply the given value (1.46 moles) by the molar mass of NaCl. This measurement is the atomic masses of the elements times each of their quantities combined. In this case, there is only one mole of each element in the molecule. Moles should be located in the denominator of the conversion to allow for the cancellation of units. The final answer should have 3 sig figs to reflect the given value.
Molar Mass (NaCl): 22.99 g/mol + 35.45 g/mol
Molar Mass (NaCl): 58.44 g/mol
1.46 moles NaCl 58.44 g
--------------------------- x ---------------- = 85.3 grams NaCl
1 mole
<u>(Part 2)</u>
I do not know which other question the second part is referring to, so I will just use the moles given in the first part. To find the formula units, you need to multiply the given value (1.46 moles NaCl) by Avogadro's Number. This conversion represents the number of formula units found in 1 mole of the sample. The moles should be in the denominator of the conversion to allow for the cancellation of units.
Avogadro's Number:
1 mole = 6.022 x 10²³ formula units
1.46 moles NaCl 6.022 x 10²³ units
------------------------ x ----------------------------- = 8.79 x 10²³ formula units NaCl
1 mole
Sika have more food choices because they eat both grasses and shrubs, compared to the white-tailed dear who only eats shrubs.
Answer: 83.11 torr
Explanation:
According to Dalton's Law of partial pressure, the total pressure of a mixture of gases is the sum of the pressure of each individual gas.
i.e Ptotal = P1 + P2 + P3 + .......
In this case,
Ptotal = 384 torr
P1 = 289 torr
P2 = 11.89 torr
P3 = ? (let the partial pressure of the remaining gas be Z)
Ptotal = P1 + P2 + Z
384 torr = 289 torr + 11.89 torr + Z
384 torr = 300.89 torr + Z
Z = 384 torr - 300.89 torr
Z = 83.11 torr
Thus, the partial pressure of the remaining gas is 83.11 torr.
Answer:
619°C
Explanation:
Given data:
Initial volume of gas = 736 mL
Initial temperature = 15.0°C
Final volume of gas = 2.28 L
Final temperature = ?
Solution:
Initial volume of gas = 736 mL (736mL× 1L/1000 mL = 0.736 L)
Initial temperature = 15.0°C (15+273 = 288 K)
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = T₁V₂/V₁
T₂ = 2.28 L × 288 K / 0.736 L
T₂ = 656.6 L.K / 0.736 L
T₂ = 892.2 K
K to °C:
892.2 - 273.15 = 619°C