Answer:
r₂ = 0.316 m
Explanation:
The sound level is expressed in decibels, therefore let's find the intensity for the new location
β = 10 log
let's write this expression for our case
β₁ = 10 log \frac{I_1}{I_o}
β₂ = 10 log \frac{I_2}{I_o}
β₂ -β₁ = 10 (
)
β₂ - β₁ = 10
log \frac{I_2}{I_1} =
= 3
= 10³
I₂ = 10³ I₁
having the relationship between the intensities, we can use the definition of intensity which is the power per unit area
I = P / A
P = I A
the area is of a sphere
A = 4π r²
the power of the sound does not change, so we can write it for the two points
P = I₁ A₁ = I₂ A₂
I₁ r₁² = I₂ r₂²
we substitute the ratio of intensities
I₁ r₁² = (10³ I₁ ) r₂²
r₁² = 10³ r₂²
r₂ = r₁ / √10³
we calculate
r₂ =
r₂ = 0.316 m
Jogging side by side since the speed is equal and the direction is the same i.e same velocity
Answer:
51.94 ft/s²
257.63 ft/s
Explanation:
t = Time taken = 4 s
u = Initial velocity = 34 mi/h
v = Final velocity
s = Displacement = 615 ft
a = Acceleration
Converting velocity to ft/s

Equation of motion

Acceleration is 51.94 ft/s²

Final velocity at this time is 257.63 ft/s
Answer:
Check the first and the third choices:
<u><em /></u>
- <u><em>a. The temperature of a gas is directly proportional to its volume</em></u>
- <u><em>b. The temperature-to-volume ratio of a gas is constant.</em></u>
Explanation:
Rewrite the table for better understanding:
Temperature of gas (K) Volume of gas (L)
298 4.55
315 4.81
325 4.96
335 ?
Calculate the ratios temperature to volume with 3 significant figures:
Then, those numbers show a <u><em>constant temperature-to-volume ratio</em></u>, which may be expressed in a formula as:
- Temperature / Volume = constant, which is a directly proportional variation (the volume increases in a constant proportion to the increase of the temperature).
Hence, the correct choices are:
- The temperature of a gas is directly proportional to its volume (first statement), and
- The emperature-to-volume ratio of a gas is constant (third statement).
For simplicity, let's call vector B-A vector C Then C is
Cx = (-6.1 - 2.2)
Cy = (-2.2 - (-6.9)) Or,
Cx = -8.3 Cy = 4.7
The magnitude is found with the Pythagorean theorem
||C|| = √(-8.3² + 4.7²) = 9.538