Your answer is 3! Hope you get a good grade :)♥
Answer: It's equal to 10^(-2.3), or 0.00501 M, or 5.01 * 10^-3 moles/Liter
Explanation:
Well, pH = - log[H+]
Or, in words, pH is equal to -1 multiplied by the logarithm (base 10) of the hydrogen ion concentration.
So you have 2.3 = -log[H+]. We want to isolate the H+, so let's start simplifying the right hand side of the equation. First, we multiply both sides by -1.
-2.3=log[H+]
Now, the definition of a logarithm says that if the log (base 10) of [H+] is -2.3, then 10 raised to the -2.3 power is [H+]
So on each side of the equation, we raise 10 to the power of that side of the equation.
10^(-2.3) = 10^(log[H+])
and because 10^log cancels out...
10^(-2.3) = [H+]
Now we've solved for [H+], the hydrogen ion concentration!
The parent isotope is cobalt-59 (see the picture below).
The mass number is 59 and atomic number is 27 of the parent isotope.
Neutron activation is the process in which atomic nucleus capture free neutron or neutrons.
Cobalt-60 is produced in nuclear reactors in process of neutron activation from parent isotope cobalt-59 (see the picture below).
Atomic number (Z) is total number of protons and mass number (A) is total number of protons and neutrons in a nucleus.
Cobalt-59 and cobalt-60 are the isotopes of chemical element cobalt.
Isotopes are chemical elements with same atomic number (Z), but different mass number (different number of neutrons).
More about isotopes: brainly.com/question/364529
#SPJ4
Mercury is the smallest and closest plant to the sun
Answer:
B: +3
Explanation:
If Gallium loses 3 electrons, it will become an ion.
The ion will be positively charged because in this new ion, the number of electrons is lesser than the number of protons. The charge difference will impart a positive net charge on the ion.
- In a neutral atom, the number of electrons and protons are the same.
- For positively charged ions, the number of protons is greater than the electrons
If Gallium the loss of 3 electrons offsets the charge balance in the chemical specie. Thus, the ion will have a net +3 charge.