Answer:
Activation energy of phenylalanine-proline peptide is 66 kJ/mol.
Explanation:
According to Arrhenius equation-
, where k is rate constant, A is pre-exponential factor,
is activation energy, R is gas constant and T is temperature in kelvin scale.
As A is identical for both peptide therefore-
![\frac{k_{ala-pro}}{k_{phe-pro}}=e^\frac{[E_{a}^{phe-pro}-E_{a}^{ala-pro}]}{RT}](https://tex.z-dn.net/?f=%5Cfrac%7Bk_%7Bala-pro%7D%7D%7Bk_%7Bphe-pro%7D%7D%3De%5E%5Cfrac%7B%5BE_%7Ba%7D%5E%7Bphe-pro%7D-E_%7Ba%7D%5E%7Bala-pro%7D%5D%7D%7BRT%7D)
Here
, T = 298 K , R = 8.314 J/(mol.K) and 
So, ![\frac{0.05}{0.005}=e^{\frac{[E_{a}^{phe-pro}-(60000J/mol)]}{8.314J.mol^{-1}.K^{-1}\times 298K}}](https://tex.z-dn.net/?f=%5Cfrac%7B0.05%7D%7B0.005%7D%3De%5E%7B%5Cfrac%7B%5BE_%7Ba%7D%5E%7Bphe-pro%7D-%2860000J%2Fmol%29%5D%7D%7B8.314J.mol%5E%7B-1%7D.K%5E%7B-1%7D%5Ctimes%20298K%7D%7D)
(rounded off to two significant digit)
So, activation energy of phenylalanine-proline peptide is 66 kJ/mol
Answer:
The answer for number one is .A
The answer for number two is heat rises
Explanation:
Answer
The molarity (M) of the H3PO4 solution = 1.0 M
Explanation
Given:
Mass of H3PO4 = 49.0 grams
Volume of the solution = 500 mL = 500/1000 = 0.5 L
What to find:
The molarity (M) of the H3PO4 solution.
Step-by-step solution:
Step 1: Convert 49.0 grams H3PO4 to moles using the mole formula.

The molar mass of H3PO4 = 97.994 g/mol
So,

Step 2: Calculate the molarity of the solution using the molarity formula.

Putting mole = 0.50 mol and volume = 0.50L into the formula, we have;

The molarity (M) of the H3PO4 solution = 1.0 M
The maximum amount of hydrogen gas that can be prepared is if all the hydrogen from both compounds is released.
The hydrogen in 4.94 g of SrH2 is calculated from the mass ratios between Sr and H
1) H2 in SrH2
Sr atomic mass = 87.62 g/mol
H2 molar mass = 2.02 g/mol
Mass of 1 mol of SrH2 = 87.62 g / mol + 2.02 g/mol = 89.64 g/mol
Ratio of H2 to SrH2 = 2.02 g H2 / 89.64 g SrH2
Proportion: 2.02 g H2 / 89.64 gSrH2 = x / 4.93 g SrH2
=> x = 4.93 g SrH2 * 2.02 g H2 / 89.64 g SrH2 = 0.111 g H2
2) H2 in H2O
2.02 g H2 / 18.02 g H2O * 4.14 g H2O = 0.464 g H2
3) Total mass of hydrogen = 0.111 g + 0.464 g = 0.575 g
Answer: 0.575 g
Explanation:
your heart is the main organ of the circulatory system