Answer:
Temperature required = 923K
Explanation:
The question is incomplete as there are some details that has to be given. details like the values of the standard enthalpies and entropies of the reactants and product as this is needed to calculate the actual value of the standard enthalpies and standard entropies of the reaction. I was able to get those values from literature and then calculated what needs to be calculated.
From there, I was able to use the equation that shows the relationship between, gibb's free energy, enthalpy, entropy and temperature. The necessary mathematical manipulation were done and the values were plugged in to get the temperature required to make the reaction spontaneous.
A few notes on the Gibb's free energy.
The Gibb's free energy also referred to as the gibb's function represented with letter G. it is the amount of useful work obtained from a system at constant temperature and pressure. The standard gibb's free energy on the other hand is a state function represented as Delta-G, as it depends on the initial and final states of the system.
The spontaneity of a reaction is explained by the standard gibb's free energy.
- If Delta-G = -ve ( the reaction is spontaneous)
- if Delta -G = +ve ( the reaction is non-spontaneous)
- if Delta-G = 0 ( the reaction is at equilibrium)
The step by step calculations is done as shown in the attachment.
There are 5.66 moles of hydrogen in the sample of talc(hydrated magnesium silicate).
Given,
Talc formula is 
moles of magnesium = 8.5 moles
The stoichiometry of magnesium and hydrogen is 3 : 2,
So 3 moles of magnesium is equivalent to 2 moles of hydrogen.
Then 8.5 moles of magnesium is equivalent to
=5.6666 moles
<h3>Talc </h3>
Talc(hydrated magnesium silicate), often known as talcum, is a type of clay mineral made up of hydrated magnesium silicate, having the formula Mg3Si4O10(OH)2. Baby powder is made of powdered talc, frequently mixed with corn starch. This mineral serves as a lubricant and thickening agent. It serves as a component in paint, pottery, and roofing materials. It serves as a key component in many cosmetics. It can be found as foliated to fibrous aggregates and in a remarkably uncommon crystal form. It is foliated with a two-dimensional platy form, has a flawless basal cleavage, and an irregular flat fracture.
Talc(hydrated magnesium silicate), the softest mineral, is assigned a value of 1 on the Mohs scale of mineral hardness, which is based on scratch hardness comparisons.
Learn more about Talc here:
brainly.com/question/24082743
#SPJ4
Answer:
The answer to your question is given below
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
Zn + 2HCl —> ZnCl2 + H2
Thus, we can write out the atoms present in both the reactant and the product by doing a simple head count. The atoms present are listed below:
Element >>> Reactant >>> Product
Zn >>>>>>>> 1 >>>>>>>>>> 1
H >>>>>>>>> 2 >>>>>>>>> 2
Cl >>>>>>>>> 2 >>>>>>>>> 2
First, recognize that this is an elimination reaction in which hydroxide must leave and a double bond must form in its place. It is likely an E2 reaction. Here is an efficient mechanism:
1) Pre-reaction: Protonate the -OH to make it a good leaving group, water. H2SO4 or any strong H+ donor works. The water is positively charged but still connected to the compound.
2) E2: Use a sterically hindered base, such as tert-butoxide (tButO-) to abstract the hydrogen from the secondary carbon. [You want a sterically hindered base because a strong, non-sterically hindered base could also abstract a hydrogen from one of the two methyl groups on the tertiary carbon, and that leads to unwanted products, which is not efficient]. As the proton of hydrogen is abstracted, water leaves at the same time, creating an intermediate tertiary carbocation, and the 2 electrons in the C-H bond immediately are used to make a double bond towards the partial positive charge.
In the products we see the major product and water, as expected. Even though you have an intermediate, remember that an E2 mechanism technically happens in one step after -OH protonation.
Solids, liquids, gases, and plasma are all matter. When all atoms that make up a substance are the same, then that substance is an element. Elements made of only one kind of atom. Because of this, elements are called "pure" substances.
hope this helps :)