<span>What we need to first do is split the ball's velocity into vertical and horizontal components. To do that multiply by the sin or cos depending upon if you're looking for the horizontal or vertical component. If you're uncertain as to which is which, look at the angle in relationship to 45 degrees. If the angle is less than 45 degrees, the larger value will be the horizontal speed, if the angle is greater than 45 degrees, the larger value will be the vertical speed. So let's calculate the velocities
sin(35)*18 m/s = 0.573576436 * 18 m/s = 10.32437585 m/s
cos(35)*18 m/s = 0.819152044 * 18 m/s = 14.7447368 m/s
Since our angle is less than 45 degrees, the higher velocity is our horizontal velocity which is 14.7447368 m/s.
To get the x positions for each moment in time, simply multiply the time by the horizontal speed. So
0.50 s * 14.7447368 m/s = 7.372368399 m
1.00 s * 14.7447368 m/s = 14.7447368 m
1.50 s * 14.7447368 m/s = 22.1171052 m
2.00 s * 14.7447368 m/s = 29.48947359 m
Rounding the results to 1 decimal place gives
0.50 s = 7.4 m
1.00 s = 14.7 m
1.50 s = 22.1 m
2.00 s = 29.5 m</span>
Explanation:
LD₁ = 10⁵ mm⁻²
LD₂ = 10⁴mm⁻²
V = 1000 mm³
Distance = (LD)(V)
Distance₁ = (10⁵mm⁻²)(1000mm³) = 10×10⁷mm = 10×10⁴m
Distance₂ = (10⁹mm⁻²)(1000mm³) = 1×10¹² mm = 1×10⁹ m
Conversion to miles:
Distance₁ = 10×10⁴ m / 1609m = 62 miles
Distance₂ = 10×10⁹m / 1609 m = 621,504 miles.
Answer:
The equation of motion is 

Explanation:
Lets calculate
The weight attached to the spring is 24 pounds
Acceleration due to gravity is 
Assume x , is spring stretched length is ,4 inches
Converting the length inches into feet 
The weight (W=mg) is balanced by restoring force ks at equilibrium position
mg=kx
⇒ 
The spring constant , 
= 72
If the mass is displaced from its equilibrium position by an amount x, then the differential equation is



Auxiliary equation is, 

=
Thus , the solution is 

The mass is released from the rest x'(0) = 0
=0


Therefore ,

Since , the mass is released from the rest from 4 inches
inches
feet
feet
Therefore , the equation of motion is 
Answer:
v = 1.15*10^{7} m/s
Explanation:
given data:
charge/ unit area
plate seperation = 1.69*10^{-2} m
we know that
electric field btwn the plates is
force acting on charge is F = q E
Work done by charge q id
this work done is converted into kinectic enerrgy

solving for v



v = 1.15*10^{7} m/s