Answer:
80.0 g Na and 20.0 g N2.
Explanation:
This means the limiting reactant determines the maximum mass of the product formed.
Answer:
9.1 = basic 1.2= very acidic 5.7= acidic
Explanation:
Answer:
V = 34.55 L
Explanation:
Given that,
No of moles, n = 1.4
Temperature, T = 20°C = 20 + 273 = 293 K
Pressure, P = 0.974 atm
We need to find the volume of the gas. It can be calculated using Ideal gas equation which is :
PV=nRT
R is gas constant, 
Finding for V,

So, the volume of the gas is 34.55 L.
Answer:
The value of the partial pressure of the oxygen
= 690 torr
Explanation:
Total pressure of the mixture of gases = 736 torr
The partial pressure of water vapor = 46 torr
From the law of pressure we know that
Total pressure = The partial pressure of water vapor + The partial pressure of oxygen 
Put the values of pressures in above equation we get,
⇒ 736 = 46 + 
⇒
= 736 - 46
⇒
= 690 torr
This is the value of the partial pressure of the oxygen.
Answer: Mass Of CFC that needs to evaporate for the freezing of water = 328.24 g
Explanation: Heat gained by the CFC = Heat lost by water
Heat lost by water = Heat required to take water's temperature to 0°c + Heat required to freeze water at 0°c
Heat required to take water's temperature from 33°c to 0°c = mCΔT
m = 201g, C = 4.18 J/(gK), ΔT = 33
mCΔT = 201 × 4.18 × 33 = 27725.94 J
Heat required to freeze water at 0°c = mL
m = 201g, L = 334 J/g
mL = 201 × 334 = 67134 J
Heat gained by CFC to vaporize = mH = 27725.94 + 67134 = 94859.94 J
H = 289 J/g, m = ?
m × 289 = 94859.9
m = 328.24 g
QED!!