Answer:
Hi myself Shrushtee.
Explanation:
Artificial gravity is a must for any space station if humans are to live there for any extended length of time. Without artificial gravity, human growth is stunted and biological functions break down. An effective way to create artificial gravity is through the use of a rotating enclosed cylinder, as shown in the figure. Humans walk on the inside edge of the cylinder, which is sufficiently large (diameter of 2235 meters) that its curvature is not readably noticeable to the inhabitants. (The space station in the figure is not drawn to the scale of the human.) Once the space station is rotating at the necessary speed, how many minutes would it take the space station to make one revolution?
The distance traveled by the man in one revolution is simply the circumference of the space station, C = 2p R. From this result, you should be able to deduce the time it takes for the space station to sweep out a complete revolution.
<h2>
<em><u>P</u></em><em><u>lease</u></em><em><u> mark</u></em><em><u> me</u></em><em><u> as</u></em><em><u> brainleist</u></em></h2>
Answer:
The current in the wire is 31.96 A.
Explanation:
The current in the wire can be calculated as follows:

<u>Where</u>:
q: is the electric charge transferred through the surface
t: is the time
The charge, q, is:

<u>Where</u>:
n: is the number of electrons = 7.93x10²⁰
e: is the electron's charge = 1.6x10⁻¹⁹ C

Hence, the current in the wire is:

Therefore, the current in the wire is 31.96 A.
I hope it helps you!
Horizontal speed = 24.0 m/s
height of the cliff = 51.0 m
For the initial vertical speed will are considering the vertical component. Therefore,
Since the student fires the canonical ball at the maximum height of 51 m, the initial vertical velocity will be zero. This means

let's find how long the ball remained in the air.
![\begin{gathered} 0=51-\frac{1}{2}(9.8)t^2 \\ 4.9t^2=51 \\ t^2=\frac{51}{4.9} \\ t^2=10.4081632653 \\ t=\sqrt[]{10.4081632653} \\ t=3.22 \\ t=3.22\text{ s} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%200%3D51-%5Cfrac%7B1%7D%7B2%7D%289.8%29t%5E2%20%5C%5C%204.9t%5E2%3D51%20%5C%5C%20t%5E2%3D%5Cfrac%7B51%7D%7B4.9%7D%20%5C%5C%20t%5E2%3D10.4081632653%20%5C%5C%20t%3D%5Csqrt%5B%5D%7B10.4081632653%7D%20%5C%5C%20t%3D3.22%20%5C%5C%20t%3D3.22%5Ctext%7B%20s%7D%20%5Cend%7Bgathered%7D)
Finally, let's find the how far from the base of the building the ball landed(horizontal distance)