Density = mass / volume = 7/14 = 0.5!g/cm^3
Answer
given,
initial speed of merry-go-round = 0 rad/s
final speed of merry-go-round = 1.5 rad/s
time = 7 s
Radius of the disk = 6 m
Mass of the merry-go-round = 25000 Kg
Moment of inertia of the disk


I = 450000 kg.m²
angular acceleration



we know,



Think of it this way:
-- Any time you have something that means (some number) PER UNIT,
it doesn't matter how many units there are on the table or in the bucket,
because that amount doesn't change the (number) PER UNIT.
-- If oranges cost $1 PER POUND, it doesn't matter how many pounds
you buy, the whole bagful is still $1 PER POUND.
-- If a certain salad dressing has 40 calories PER Tablespoon, it doesn't
matter whether you eat a drop of it or drink the whole jar. You still get
40 calories PER Tablespoon.
-- Density means '(mass) PER unit of volume'. Whether you have a tiny
chip of the substance or a whole truckload of it, there's still the same
amount of mass IN EACH unit of volume.
Answer:
426.84 m
Explanation:
initial velocity u = 0
time t = 3.3 s
distance travelled s = 53.4 m
acceleration due to gravity = g
s = ut + 1/2 g t²
53.4 = 0 + 1/2 g x 3.3²
g = 9.8 m /s²
For the whole length of fall
distance travelled = h
total time = 6.6 + 3.3 = 9.9 s
h = ut + 1/2 g t²
u again = 0
h = .5 x 9.8 x 9.9²
= 480.24 m
distance travelled in last 6.6 s
= 480.24 - 53.4
= 426.84 m
Answer:

Explanation:
Momentum is the product of velocity and mass. The formula is:

We know the rock is falling. Its momentum is 200 kilograms meters per second and its velocity is 5 meters per second. Substitute the values into the formula.

We are solving for m, the mass. We must isolate the variable. It is being multiplied by 5 meters per second. The inverse of multiplication is division, so we divided both sides by 5.0 m/s.


The units of meters per second (m/s) cancel.


The falling rock has a mass of <u>40 kilograms.</u>