Answer:
Charge on each metal sphere will be 
Explanation:
We have given number of electron added to metal sphere A 
As both the spheres are connected by rod so half -half electron will be distributed on both the spheres.
So electron on both the spheres 
We know that charge on each electron 
So charge on both the spheres will be equal to 
So charge on each metal sphere will be equal to 
Answer:
The electric potential is approximately 5.8 V
The resulting direction of the electric field will lie on the line that joins the charges but since it is calculated in the midpoint and the charges are the same we can directly say that its magnitude is zero
Explanation:
The two protons can be considered as point charges. Therefore, the electric potential is given by the point charge potential:
(1)
where
is the charge of the particle,
the electric permittivity of the vacuum (I assuming the two protons are in a vacuum) and
is the distance from the point charge to the point where the potential is being measured. Because the electric potential is an scalar, we can simply add the contribution of the two potentials in the midpoint between the protons. Thus:

Substituting the values
,
and
we obtain:

The resulting direction of the electric field will lie on the line that joins the charges but since it is calculated in the midpoint and the charges are the same we can directly say that its magnitude is zero.
Answer:
you are making an observation that uses numbers.
Explanation:
Hookes law state that provided that the elastic limit is not exceeded, the extension is directly proportional to the force
According to Newton laws of motion,
F = m*a
Here, m = 1,560 Kg
a = 1.30 m/s²
Substitute their values,
F = 1,560 * 1.30
F = 2028 N ~ 2030 N [ Closest value ]
In short, Your Answer would be Option C
Hope this helps!