<span>They are used to measure and map effluent and pollution discharges from factories and sewerage plants, and the movement of sand around harbours, rivers and bays. Radioactive materials used for such purposes have short half-lives and decay to background levels within days.</span>
Ciara is winging....etc
The answer is : 0.60 N, toward the center of the circle
A satellite....etc
The Answer is : 7400 m/s
What is the .....etc
The Answer is : 2.60 m/s
The velocity with which the jumper leaves the floor is 5.1 m/s.
<h3>
What is the initial velocity of the jumper?</h3>
The initial velocity of the jumper or the velocity with which the jumper leaves the floor is calculated by applying the principle of conservation of energy as shown below.
Kinetic energy of the jumper at the floor = Potential energy of the jumper at the maximum height
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- v is the initial velocity of the jumper on the floor
- h is the maximum height reached by the jumper
- g is acceleration due to gravity
v = √(2 x 9.8 x 1.3)
v = 5.1 m/s
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
Answer:
All the given options will result in an induced emf in the loop.
Explanation:
The induced emf in a conductor is directly proportional to the rate of change of flux.

where;
A is the area of the loop
B is the strength of the magnetic field
θ is the angle between the loop and the magnetic field
<em>Considering option </em><em>A</em>, moving the loop outside the magnetic field will change the strength of the magnetic field and consequently result in an induced emf.
<em>Considering option </em><em>B</em>, a change in diameter of the loop, will cause a change in the magnetic flux and in turn result in an induced emf.
Option C has a similar effect with option A, thus both will result in an induced emf.
Finally, <em>considering option</em> D, spinning the loop such that its axis does not consistently line up with the magnetic field direction will<em> </em>change the angle<em> </em>between the loop and the magnetic field. This effect will also result in an induced emf.
Therefore, all the given options will result in an induced emf in the loop.
Answer:
The number of turns in the solenoid is 22366.
Explanation:
The number of turns in the solenoid can be found using the following equation:

Where:
B: is the magnetic field = 8.90 T
L: is the solenoid's length = 0.300 m
N: is the number of turns =?
I: is the current = 95 A
μ₀: is the magnetic constant = 4π×10⁻⁷ H/m
By solving equation (1) for N we have:

Therefore, the number of turns in the solenoid is 22366.
I hope it helps you!