Data:
solute: ethylene glicol => not ionization
molar mass of ethylene glicol (from internet) = 62.07 g/mol
solute = 400 g
solvent = water = 4.00 kg
m =?
ΔTf = ?
Kf = 1.86 °C/mol
Formulas:
m: number of moles of solute / kg of solvent
ΔTf = Kf*m
number of moles of solute = mass in grams / molar mass
Solution
number of moles of solute = 400 g / 62.07 g/mol = 6.44 moles
m = 6.44 mol / 4 kg = 1.61 m <-------- molality (answer)
ΔTf = 1.86 °C / m * 1.61 m = 2.99 °C <---- lowering if freezing point (answer)
uuuuuuuuuuuuuuuuuuuuuuum i think it the way its shaped
Answer:
The factors that govern the position of an IR absorption peak includes:
A.)strength of the bond
C.)masses of the atoms involved in the bond
D.)the type of vibration being observed
Explanation:
Infra red spectroscopy covers a range of techniques, mostly based on absorption spectroscopy.
The mantle is mostly rich in iron and magnesium oxides and silicates. The mantle is usually divided into the Upper and Lower mantle separated by a transition zone that is smaller than the one that exists between the Inner and Outer core.
Some key things to remember when discussing states of Earth's structure are:
1. Temperatures are highest at depth and increase as you go towards the surface
2. Materials are thicker at depth, with high viscosity, due to increased pressure
Therefore, rocks in the lower mantle are at a high enough temperature that they become soft and are able to flow slowly.
Answer:
Explanation: What is the universe made of?
Astronomers face an embarrassing conundrum: they don’t know what 95% of the universe is made of. Atoms, which form everything we see around us, only account for a measly 5%. Over the past 80 years it has become clear that the substantial remainder is comprised of two shadowy entities – dark matter and dark energy. The former, first discovered in 1933, acts as an invisible glue, binding galaxies and galaxy clusters together. Unveiled in 1998, the latter is pushing the universe’s expansion to ever greater speeds. Astronomers are closing in on the true identities of these unseen interlopers.
2 How did life begin?
Four billion years ago, something started stirring in the primordial soup. A few simple chemicals got together and made biology – the first molecules capable of replicating themselves appeared. We humans are linked by evolution to those early biological molecules. But how did the basic chemicals present on early Earth spontaneously arrange themselves into something resembling life? How did we get DNA? What did the first cells look like? More than half a century after the chemist Stanley Miller proposed his “primordial soup” theory, we still can’t agree about what happened. Some say life began in hot pools near volcanoes, others that it was kick-started by meteorites hitting the sea.
3 Are we alone in the universe?
science 3
Perhaps not. Astronomers have been scouring the universe for places where water worlds might have given rise to life, from Europa and Mars in our solar system to planets many light years away. Radio telescopes have been eavesdropping on the heavens and in 1977 a signal bearing the potential hallmarks of an alien message was heard. Astronomers are now able to scan the atmospheres of alien worlds for oxygen and water. The next few decades will be an exciting time to be an alien hunter with up to 60bn potentially habitable planets in our Milky Way alone.