The amount of sample that is left after a certain period of time, given the half-life, h, can be calculated through the equation.
A(t) = A(o) (1/2)^(t/d)
where t is the certain period of time. Substituting the known values,
A(t) = (20 mg)(1/2)^(85.80/14.30)
Solving,
A(t) = 0.3125 mg
Hence, the answer is 0.3125 mg.
Answer:
1.2 × 10⁴ cal
Explanation:
Given data
- Initial temperature: 80 °C
We can calculate the heat released by the water (
) when it cools using the following expression.

where
c is the specific heat capacity of water (1 cal/g.°C)

According to the law of conservation of energy, the sum of the heat released by the water (
) and the heat absorbed by the reaction (
) is zero.

Answer:
Other forms of energy can convert to mechanical energy
Explanation:
For example the electric or magnetic energy in a motor can convert to mechanical energy, or another example is when you put two magnets together they will clip together due to the magnetic energy that they have.
V1 = 2.0 L
T1 = 25.0 oC = 298 K V2 = V1T2 = (2.0 L)(244 K) = 1.6 L
V2 = ? t1(298 K)
T2 = –28.9 oC = 244 K