Answer:
+1.46×10¯⁶ C
Explanation:
From the question given above, the following data were obtained:
Charge 1 (q₁) = +26.3 μC = +26.3×10¯⁶ C
Force (F) = 0.615 N
Distance apart (r) = 0.750 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Charge 2 (q₂) =?
The value of the second charge can be obtained as follow:
F = Kq₁q₂ / r²
0.615 = 9×10⁹ × 26.3×10¯⁶ × q₂ / 0.750²
0.615 = 236700 × q₂ / 0.5625
Cross multiply
236700 × q₂ = 0.615 × 0.5625
Divide both side by 236700
q₂ = (0.615 × 0.5625) / 236700
q₂ = +1.46×10¯⁶ C
NOTE: The force between them is repulsive as stated from the question. This means that both charge has the same sign. Since the first charge has a positive sign, the second charge also has a positive sign. Thus, the value of the second charge is +1.46×10¯⁶ C
Answer:
F = 50636.873 N
Explanation:
given,
bucket of water = 700-kg
length of cable = 20 m
Speed = 40 m/s
angle of the cable = 38.0°
let air resistance be = F
tension in rope be = T
T cos 38° = m×g..................(1)
..........(2)
equation (1)/(2)


F = 50636.873 N
Hence the force exerted on the bucket is equal to F = 50636.873 N
When the same masses are heated by the same amount copper will heat up the fastest. Copper is a good conductor of heat that is why it easily heats up. Gold is not a good conductor of heat because of its stable properties.
gawaingnpang nkabuhayan, hamon at oportinidad