Answer:
<em>2 m/s</em>
<em></em>
Explanation:
The electromagnetic flow-metre work on the principle of electromagnetic induction. The induced voltage is given as

where
is the induced voltage = 2.88 mV = 2.88 x 10^-3 V
is the distance between the electrodes in this field which is equivalent to the diameter of the tube = 1.2 cm = 1.2 x 10^-2 m
is the velocity of the fluid through the field = ?
is the magnetic field = 0.120 T
substituting, we have
2.88 x 10^-3 = 0.120 x 1.2 x 10^-2 x 
2.88 x 10^-3 = 1.44 x 10^-3 x 
= 2.88/1.44 = <em>2 m/s</em>
The standard unit is KW/hr, = 1,000W/hr.
(85 + 60) = 145W.
You need to find its fraction of 1,000W., so (145/1000) = 0.145 KWH.
(0.145 x 10p) = 1.45p. per hr.
Answer:
The acceleration of the body, a = 2193 m/s²
Explanation:
Given,
The mass of the body, m = 0.3 kg
The force acting on the body, F = 657.9 N
The force acting on an object is proportional to the product of mass and acceleration of the body.
F = m x a
Therefore, the acceleration of the body is
a = F / m
= 657.9 N / 0.3 kg
= 2193 m/s²
Hence, the acceleration of the body, a = 2193 m/s²
These two forces are called action and reaction forces and are the subject of Newton's third law of motion. Formally stated, Newton's third law is: For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects.
Hope this helps! :)