In thermodynamics<span>, </span>work<span> performed by a system is the energy transferred by the system to its surroundings. It can be calculated by the expression:
</span>
W = PdV
Integrating,
We will have,
W = P(V2 - V1)
133.7 (1 litre-atm / 101.325 Joule) ( <span>760 Torr / atm ) </span>= 783 (V2 - .0737 )
V2 = 1.35 L
Hope this answers the question. Have a nice day.
Answer:
A single compound is simultaneously oxidized and reduced.
Explanation:
In chemistry, disproportionation is a simultaneous oxidation and reduction of a single chemical specie.
What this means is that; in a disproportionation reaction, only one compound is both oxidized and reduced. This implies that two products are formed during disproportionation. One is the oxidized product while the other is the reduced product.
Consider the disproportionation of CuCl shown below;
2CuCl -----> CuCl2 + Cu
Here, CuCl2 is the oxidized product while Cu is the reduced product.
Answer:
The answer to your question is D. 25 grams.
Answer:
Keep temperature constant and increase the pressure of the reaction. The rate of reaction increases.
Explanation:
First of all, the question is asking us to design an experiment to investigate the effect of pressure on the rate of reaction hence the pressure can not be held constant since it is the variable under investigation. This eliminates the first option.
Secondly, increasing the pressure of the reaction means that particles of the gas collide more frequently leading to a greater number of effective collisions and a consequent increase in the rate of reaction according to the collision theory.
Hence the answer above.
Answer:
The molarity (M) of the following solutions are :
A. M = 0.88 M
B. M = 0.76 M
Explanation:
A. Molarity (M) of 19.2 g of Al(OH)3 dissolved in water to make 280 mL of solution.
Molar mass of Al(OH)3 = Mass of Al + 3(mass of O + mass of H)
= 27 + 3(16 + 1)
= 27 + 3(17) = 27 + 51
= 78 g/mole
= 78 g/mole
Given mass= 19.2 g/mole


Moles = 0.246

Volume = 280 mL = 0.280 L

Molarity = 0.879 M
Molarity = 0.88 M
B .The molarity (M) of a 2.6 L solution made with 235.9 g of KBr
Molar mass of KBr = 119 g/mole
Given mass = 235.9 g

Moles = 1.98
Volume = 2.6 L


Molarity = 0.762 M
Molarity = 0.76 M