Arrhenius' equation relates the dependence of rate constant of a chemical reaction to the temperature. The equation below is the Arrhenius equation

where k is the rate constant, T is the absolute temperature. As the temperature of the system increases, the rate constant also increases and vice versa.
Using the Debroglies equation,energy can be found,as 1.9773*10*-9
then, energy* wave length= hc
c is the speed of light and is the planks constant.
wave length =1.006*10*-16 m
Answer:
a. The magnitude of the tension in the string is greater than the magnitude of the weight of the rock.
Explanation:
During the motion of the rock while it is in downward motion we can say

since it is performing circular motion so we will have its acceleration towards its center



So at the lowest point of the path we can say

so correct answer is
a. The magnitude of the tension in the string is greater than the magnitude of the weight of the rock.
Answer:
I think that's Newton's second law of motion
Explanation:
f = m(v-u)
________
t
since a = (v-u)t
f = ma
Answer:
1.312 x 10⁻¹² J/nucleon
Explanation:
mass of ¹³⁶Ba = 135.905 amu
¹³⁶Ba contain 56 proton and 80 neutron
mass of proton = 1.00728 amu
mass of neutron = 1.00867 amu
mass of ¹³⁶Ba = 56 x 1.00728 amu + 80 x 1.00867 amu
= 137.10128 amu
mass defect = 137.10128 - 135.905
= 1.19628 amu
mass defect = 1.19628 x 1.66 x 10⁻²⁷ Kg
= 1.9858 x 10⁻²⁷ Kg
speed of light = 3 x 10⁸ m/s
binding energy,
E = mass defect x c²
E = 1.9858 x 10⁻²⁷ x (3 x 10⁸)²
E = 17.87 x 10⁻¹¹ J/atom
now,
binding energy per nucleon =
= 0.1312 x 10⁻¹¹ J/nucleon
= 1.312 x 10⁻¹² J/nucleon