<em>A statement that is true for ALL of the examples of electromagnetic waves is that;</em>
A) They all move at the same speed in a vacuum
<u>The reason for qualifying 'in vacuum' is because EM waves of different frequencies often propagate at different speeds through material. Generally speaking, we say that light travels in waves, and all electromagnetic radiation travels at the same speed which is about 3.0 * 108 meters per second through a vacuum.</u>
Explanation:
The momentum of the three objects are as follow :
11 kg-m/s, -65 kg-m/s and -100 kg-m/s
Before collision, the momentum of the system is :

After collison, they move together. It means it is a case of inelastic collision. In this type of collision, the momentum of the system remains conserved.
It would mean that, after collision, momentum of the system is equal to the initial momentum.
Hence, final momentum = -154 kg-m/s.
Answer:
5.1*10^3 J/m^3
Explanation:
Using E = q/A*eo
And
q =75*10^-6 C
A = 0.25
eo = 8.85*10^-12
Energy density = 1/2*eo*(E^2) = 1/2*eo*(q/A*eo)^2 = [q^2] / [2*(A^2)*eo]
= [(75*10^-6)^2] / [2*(0.25)^2*8.85*10^-12]
= 5.1*10^3 J/m^3
Energy is "the ability to do work". Energy is how things change and move. It takes energy to cook food, to drive to school, and to jump in the air. Different forms of Energy. Energy can take a number of different forms.
No work is done because the object needs to be moved. The formula for work is Work = Force x Distance.