Answer:
50 g of S are needed
Explanation:
To star this, we begin from the reaction:
S(s) + O₂ (g) → SO₂ (g)
If we burn 1 mol of sulfur with 1 mol of oxygen, we can produce 1 mol of sulfur dioxide. In conclussion, ratio is 1:1.
According to stoichiometry, we can determine the moles of sulfur dioxide produced.
100 g. 1mol / 64.06g = 1.56 moles
This 1.56 moles were orginated by the same amount of S, according to stoichiometry.
Let's convert the moles to mass
1.56 mol . 32.06g / mol = 50 g
The freezing point of water is 0° C. The Celsius (centigrade) scale is based off of water, with the freezing point at 0° and the boiling point at 100°. (Google will probably tell you this in 10 seconds, then you wouldn't have had to wait 7 hours!)
Answer:
10 molecules of NH₃.
Explanation:
N₂ + 3H₂ --> 2NH₃
As the N₂ supply is unlimited, what we need to do to solve this problem is <u>convert molecules of H₂ into molecules of NH₃</u>. To do so we use the <em>stoichiometric coefficients</em> of the balanced reaction:
- 15 molecules H₂ *
= 10 molecules NH₃
10 NH₃ molecules could be prepared from 15 molecules of H₂ and unlimited N₂.
Less reactive than Group<span> I </span>elements<span>. The reasoning for this is because it is </span>more<span> difficult to lose two electrons compared to losing just </span>one<span> electron. They mostly React with water to form alkaline solutions. ...Now This is because the smaller an atom the closer the outer electrons are to the nucleus.</span>