The material can transmit heat by energy transfer through collision of atoms. The elements that has a high ability of transmitting heat within their material are the metals. They are said to have high thermal conductivity. As the metal heats up, because the atoms are closely packed, they easily transfer heat through conduction. For example, copper is used in electrical wirings because it has a high thermal conductivity.
<span>With a partner, describe interactions in this scene, tracing the movement of materials or energy through all four of Earth's spheres if possible. Plants (biosphere) draw water (hydrosphere) and nutrients from the soil (geosphere) and release water vapor into the atmosphere.</span>
Answer:
P = 5280 W
Explanation:
The conductivity of the materials determines that heat flows from the hot part to the cold part, the equation for thermal conductivity transfer is
P = Q / t = k A (
-
) / L
Where k is the thermal conductivity of the glass 0.8 W / ºC, A the area of the window, T the temperature and L is glass thickness
Let's calculate the window area
A = l * a
A = 2.0 1.0
A = 2.0 m²
Let's replace
L = 0.5 cm (1 m / 100 cm) = 0.005 m
P = 0.8 2 (20.5 - 4) / 0.005
P = 5280 W
Answer:
Due to potential difference (elaborated in explanation)
Explanation:
When a bird sits on a power line, its whole body is in contact with the power line. It does not have any contact with the ground or anything at a lower potential. Hence, the current does not flow through the bird's body, because there is no potential difference available as a driving force.
Now, when a person touches the power line his hand is at a higher potential provided by the power line, while the rest of his body is connected to the ground, usually through legs. The current always looks for a path from high potential to low potential. Therefore, the body of the person serves as the path for the current. Heavy current flows through the body and the person dies within split seconds.