Answer: 1.6Hz
foe[vqefmvkeqmvkevkefmvqelkfveklveqv
8500 Hz and Longitudinal
Speed = frequency x wavelength
Speed of sound at 20 degrees Celsius is approximately 340 m/s
I am pretty sure that the only statement which is true for particles of the medium of an earthquake P-wave is being shown in the option : b)vibrate parallel to the wave, forming compressions and rarefactions. As you know, it can be formed in two ways : from alternating compressions and rarefactions or primary wave. I bet you will agree with me.
In mechanics, the normal force<span> is the component, perpendicular to the surface (surface being a plane) of contact, of the contact </span>force<span> exerted on an object . We calculate as follows:
</span>∑F along x = 0 = F - Fn
<span>
Fn = F = mg = 7.52(9.81) = 73.77 N <------OPTION B</span>
Answer:
8.4 kW
Explanation:
Using the Stefan-Boltzmann law,
P = εAσT4
Where:
P: Radiation Energy
ε: Emissivity of the Surface. Check emissivity table below of common materials.
A: Surface Area, in m^2.
σ: Stefan-Boltzmann Constant, σ=5.67 × 10-8 W/m2•K4
T: Temperature
Plugging in values,
P = 0.85 x 3.328 x 5.67 x 10^(-8) x 205
P = 8383 W or 8.4 kW