The molecular structure of the solids has lower ability to conduct electricity due to tight holding by nucleus.
<h3>Why molecular solids are poor conductors?</h3>
Molecular solids are also poor conductors of electricity because their valence electrons are tightly held by the nuclear charges present in the nucleus while on the other hand, Metals are good electrical conductors in the solid form due to the presence of free electrons that helps in the conduction of electricity.
Learn more about electricity here: brainly.com/question/25144822
Answer:
pressure and temperature are directly proportional.
Explanation:
At constant temperature and pressure the volume of a gas is directly proportional to the number of moles of gas. Also given a constant temperature and volume the pressure of a gas is directly proportional to the number of moles of gas.
This means that if V is constant then
P = n (RT/V) then n= PV/RT. As P is increased, T is also increased thereby decreasing the value of n since pressure and temperature are directly proportional.
CaSO4.2H2O is a white crystal at room temperature. It is soluble in water. Gypsum can be used as a fertilizer.
This Might Be The Answer Idk?
I think that the answer could be A. X and Y
Answer:
C. at low temperature and low pressure.
Explanation:
- <em>Le Châtelier's principle </em><em>states that when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.</em>
<em />
<em>2CO₂(g) ⇄ 2CO(g) + O₂(g), ΔH = -514 kJ.</em>
<em></em>
<em><u>Effect of pressure:</u></em>
- When there is an increase in pressure, the equilibrium will shift towards the side with fewer moles of gas of the reaction. And when there is a decrease in pressure, the equilibrium will shift towards the side with more moles of gas of the reaction.
- The reactants side (left) has 2.0 moles of gases and the products side (right) has 3.0 moles of gases.
<em>So, decreasing the pressure will shift the reaction to the side with higher no. of moles of gas (right side, products), </em><em>so the equilibrium partial pressure of CO (g) can be maximized at low pressure.</em>
<em></em>
<u><em>Effect of temperature:</em></u>
- The reaction is exothermic because the sign of ΔH is (negative).
- So, we can write the reaction as:
<em>2CO₂(g) ⇄ 2CO(g) + O₂(g) + heat.</em>
- Decreasing the temperature will decrease the concentration of the products side, so the reaction will be shifted to the right side to suppress the decrease in the temperature, <em>so the equilibrium partial pressure of CO (g) can be maximized at low temperature.</em>
<em></em>
<em>C. at low temperature and low pressure.</em>
<em></em>