Complete Question:
The complete question is on the first uploaded image
Answer:
The solution is on the second uploaded image
Explanation:
The explanation of the above solution is on the third uploaded image.
Answer:
You cannot make observations if you are 57 seconds late into the lab.
Explanation:
The atomic nucleus can split by decay into 2 or more particles as a result of the instability of its atomic nucleus due to the fact that radioactive elements possess an unstable atomic nucleus.
Now, the primary particles which are emitted by radioactive elements in order to make them decay are alpha, beta & gamma particles.
The half life equation is;
N_t = N₀(½)^(t/t_½)
Where:
t = duration of decay
t_½ = half-life
N₀ = number of radioactive atoms initially
N_t = number of radioactive atoms remaining after decay over time t
We are given;
t = 57 secs
N₀ = 100 g
Now, half life of Nitrogen-16 from online sources is 7.2 seconds. t_½ = 7.2
Thus;
N_t = 100(1/2)^(57/7.2)
N_t = 0.4139g
We are told that In order to make observations, you require at least .5g of material.
The value of N_t you got is less than 0.5g, therefore you cannot make observations if you are 57 seconds late.
Answer:
P2 = 1250mmHg
Explanation:
V1 = 5.0L
P1 = 750mmHg
V2 = 3.0L
P2 = ?
According to Boyle's law, the volume of a fixed mass of gas is inversely proportional to its pressure provided that temperature remains constant.
P = k/V k = P*V
P1*V1 = P2*V2 = P3*V3 =........=Pn*Vn
P1 *V1 = P2 * V2
Solve for P2
P2 = (P1 * V1) / V2
P2 = (750 * 5.0) / 3.0
P2 = 3750 / 3
P2 = 1250mmHg
The final pressure of the gas is 1250mmHg