To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
<span>P2 = P1V1/V2</span>
<span>
</span>
<span>The correct answer is the first option. Pressure would increase. This can be seen from the equation above where V2 is indirectly proportional to P2.</span>
We shall find the molar mass first.
Ca5(PO4)3(OH) = (40 * 5) + 3 (31 + 4(16)) + 16 + 1 = 200 + 285 + 17 = 485 + 17 = 502.
Percent of Calcium = 200/ 502 * 100 = 39.8%
Percent of Phosphorus = 91/502 * 100 = 18.1%
Percent of Hydrogen = 1/502 * 100 = 0.19%
Percent of Oxygen = 100 - (39.8 + 18.1 + 0.19) = 41.91%
Molar mass:
H₂O = 18.0 g/mol
O₂ = 32.0 g/mol
<span>C</span>₅<span>H</span>₁₂<span> + 8 O</span>₂<span> -> 5 CO</span>₂<span> + 6 H</span>₂<span>O
</span>
8 x (32 g ) ------------ 6 x (18 g )
mass O₂ ------------ 108 g H₂O
mass O₂ = 108 x 8 x 32 / 6 x 18
mass O₂ = 27648 / 108
mass O₂ = 256 g
hope this helps!
When the temperature increases, warms, or heats up the molecules become excited. Their movement becomes faster and they tend to move far apart from other molecules.