The pH scale is used to measure the degree of acidity or alkalinity of a solution. The scale runs from 0 (very acidic solutions can have a negative pH) to 14 (very alkaline solutions can have a pH higher than this), while a neutral liquid such as pure water has a pH of 7. The pH is linked to the concentration of hydrogen ions (H +) in the solution. Diluting an acid or alkali affects the concentration of H +<span> ions in a solution and therefore affects the pH. In this activity, we will investigate how diluting an acid or alkali affects the pH.
Hope this helps:D
Have a great rest of a brainly day!</span>
Answer:
0.823 M was the molarity of the KOH solution.
Explanation:
(Neutralization reaction)
To calculate the concentration of base , we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is KOH.
We are given:

Putting values in above equation, we get:


0.823 M was the molarity of the KOH solution.
Answer:
They aren't listed as a whole number, because an atom's mass is not always a whole number. The mass differs between types of atoms as well.
Slow it down - I believe?
Answer:
A) litmus is red
Explanation:
To answer this question, it can be helpful to have the color charts. Litmus, phenolphthalein and methyl orange are ways to test the pH of a substance.
<u>Litmus paper</u>
Litmus can tell you if a substance is an acid or a base. You need to put the substance on both red litmus and blue litmus paper.
pH < 7: both papers are red. 3.0 is less than 7.
pH = 7: none of them change color
pH > 7: both papers are blue
<u>Phenolphthalein</u>
When this indicator is added to a substance, the result is either colorless or pink.
0 < pH ≤ 7: colorless. The color is not red or blue for pH 3.0.
pH > 7: pink
<u>Methyl orange</u>
0 < pH < 4: red. The color is not yellow if the pH is 3.0.
4 ≤ pH < 5: orange
pH ≥ 5: yellow