Answer:
The true weight of the aluminium is
4.5021 kg
Explanation:
Given data
= 4.5 kg
= 1.29 
= 2.7× 
The true mass of the aluminium is given by

Put all the values in above equation we get

4.5021 kg
Therefore the true weight of the aluminium is
4.5021 kg
The force (F) of attraction or repulsion between two point charges (Q1 and Q2) is given by the following rule:
F = <span>(k * q1 * q2) / (r^2) where:
</span>q1 and q2 are the charges
k is coulomb's constant = 9 x 10^9<span> N. m</span>2/ C<span>2
</span>r is the distance between the two charges.
Applying the givens in the mentioned equation, we find that:
F = (9 x 10^9<span> x 0.07 x 10^6 x 2) / (0.0108)^2 = 1.08 x 10^19 n </span>
Check this Light doesn't have mass or gravity right?
So if it doesn't have mass or gravity so light can only affect objects with mass
Does that make sense?
The black hole has gravity and remember light doesn't have gravity so does it affect the light?
To answer that yes, and since light doesn't have gravity it gets "pulled" into the black hole
I hope this helps you
<span>Basically, the variable n is equal to the amount of P out of the system divided by the about of P into the system
</span>
Length of the pipe = 0.39 m
Number of harmonics = 3
Now there are 3 loops so here we can say


now here at the center of the pipe it will form Node
we need to find the distance of nearest antinode
So distance between node and its nearest antinode will be


So the distance will be 6.5 cm