Answer:
x=2.4t+4.9t^2
Explanation:
This equation is one of the kinematic equations to solve for distance. The original equation is as follows:
X=Xo+Vt+1/2at^2
We know that the ball starts at rest meaning that its initial velocity and position is zero.
X=0+Vt+1/2at^2
Since it is going down the ramp, you can use the acceleration of gravity constant. (9.81 m/s^2) and simplify that with the 1/2.
X=Vt+4.9t^2
Note: Since the positive direction in this problem is down, you are adding the 4.9t^2, but if a question says that the downward direction is negative, you would subtract those values.
Now, substitute in your velocity value.
X=2.4t+4.9t^2
W = Fd = 4(2100) = 8400 J
So the answer is A) 8400 J
I was just rewriting my notes on the work lesson I did in class today, so I saw this question at the perfect time!! :)
Hope it helps!! :)
It goes through your left atrium and right atrium
|acceleration| = (change in speed) / (time for the change)
Change in the car's speed = (27 - 0) = 27 m/s
Time for the change = 10 sec
|acceleration| = (27 m/s) / (10 s) = 2.7 m/s² .
That's the magnitude of the car's acceleration.
We don't know anything about its direction.
Answer:
power=work done÷time taken
2×5=10
10÷10=1
ans 1J per second