the state of being thick, sticky, and semifluid in consistency, due to internal friction.
Answer:
Statement 2 is wrong
Explanation:
To check the statements in this exercise, let's describe the main properties of electromagnetic waves. Let's describe the characteristics
* they are transverse waves
* formed by the oscillations of the electric and magnetic fields
* the speed of the wave is the speed of light
with these concepts let's review the final statements
1) True. Formed by the oscillation of the two fields
2) False. They are transverse waves
3) True. Can travel by vacuum as they are supported by oscillations of the electric and magnetic fields
4) True. They all have the same speed of light
Statement 2 is wrong
Velocity is the speed and direction combined.
So, the two jets both are going at the same speed.
But they are going in different directions, so their velocities are different.
The given question is incomplete. The complete question is as follows.
A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begins to move. Then the force (in newtons) exerted by the expanding gas on the bullet is
, where x is in meters. Determine the work done by the gas on the bullet as the bullet travels the length of the barrel.
Explanation:
We will calculate the work done as follows.
W = 
= 
= ![[14000x + 5000x^{2} - 8666.7x^{3}]^{0.54}_{0}](https://tex.z-dn.net/?f=%5B14000x%20%2B%205000x%5E%7B2%7D%20-%208666.7x%5E%7B3%7D%5D%5E%7B0.54%7D_%7B0%7D)
= 7560 + 1458 - 1364.69
= 7653.31 J
or, = 7.65 kJ (as 1 kJ = 1000 J)
Thus, we can conclude that the work done by the gas on the bullet as the bullet travels the length of the barrel is 7.65 kJ.